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Abstract

Interval models may be used in many cases to express the
imprecision and the uncertainty related to complex systems.
The envelopes may be used to represent the results of the
simulation of these models. One of the applications of the
envelopes is as reference behaviour for Fault Detection (FD)
based on analytical redundancy. In this case, the properties
of the envelopes (completeness, soundness) have important
consequences on the results of the FD, like missed or false
alarms. This paper presents the Modal Interval Simulator
(MIS), which approaches the FD problem by means of error-
bounded envelopes, i.e. by the simultaneous computation of
an overbounded envelope and an underbounded one. Modal
Interval Analysis, which provides tools to compute interval
extensions of real functions with the adequate semantics, is
used for computing these envelopes. The MIS system uses
multiple sliding time windows for performing FD. This al-
lows the detection of faults of different kinds avoiding (pro-
vided that some assumptions are fulfilled) false alarms.

Introduction

A fault is a deviation of at least one characteristic prop-
erty or parameter of a system from the acceptable, usual
or standard condition (Isermann & Ballé 1997). The con-
sequences of a fault may range from economical losses de-
rived from lower efficiency of the system to danger for the
people or the environment. This makes the early detection
of faults an important task. Many different techniques have
been developed in the recent years to approach this prob-
lem (Chen & Patton 1998; Frank, Ding, & Kdppen-Seliger
2000). Among them, there are heuristic approaches, which
are based on rules or cognitive methods, and analytical ap-
proaches, which are based on a model of the system. In the
latter case tools like identification or estimation are used.
One technique for detecting faults consists in comparing
the behaviour of the real system and a reference one. A
fault is detected when there are discrepancies between them
(Reiter 1987). This technique is called physical redundancy
when the reference behavior is obtained from another system
and analytical redundancy when it is obtained from a model
of the system. In the latter case, the results of the Fault De-
tection (FD) are highly dependent on the model. The main
problem is that the model is an approximate representation
of the system and hence the two behaviours are never exactly

the same. This is a consequence of the modeling procedure
of systems because it usually involves hypotheses, assump-
tions, simplifications, linearizations, etc.

Uncertainty and imprecision must be considered in order
to avoid this problem. They can be taken into account, for
instance, when the comparison between the behaviour of the
real system and the one of its model is performed. In this
case, a fault is indicated when the difference is larger than
a threshold. The difficulty is to determine the size of the
threshold, which depends on the uncertainty and the im-
precision. If the threshold is too small, there may be false
alarms. On the other side, if the threshold is too large, there
may be missed alarms, i.e. faults that are not indicated.

Imprecision and uncertainty may also be considered in
the modeling procedure. This work is based on this ap-
proach. Specifically, interval models, i.e. models with
interval-valued parameters, are used. The simulation of this
kind of models produces envelopes. In this case, a fault is in-
dicated when the behaviour of the real system is outside the
predicted envelope. Then, the properties of the FD results
are consequence of the properties of the envelopes. Best FD
results are obtained using the exact envelope, but its calcula-
tion is a difficult task. This work proposes to approach this
problem by generating error-bounded envelopes, which pro-
duce the same FD results than the exact envelope requiring
much less computations. The computation of error-bounded
envelopes is tackled by using modal intervals. The FD re-
sults are improved using multiple sliding time windows.

The Modal Interval Simulator (MIS) includes these fea-
tures, i.e. the computation of error-bounded envelopes by
means of Modal Interval Analysis and the use of multiple
sliding time windows. This simulator is applied to the detec-
tion of faults in an academic example. This example shows
the effects of the uncertainty in the measurements. The pro-
posed approach to deal with this problem is used for detect-
ing faults in a real example. Finally, a summary is presented
and some conclusions and some orientations for the future
work are provided.

Interval Models

A usual model consisting of functions with real-valued pa-
rameters is precise so it does not capture imprecision and
uncertainty. These can be represented in an interval model,
that is, a model where the values of the parameters are inter-



vals. An interval model represents indeed a set of models.
For instance, assume that the behaviour of a n-th order dy-
namic SISO (Single Input, Single Output) discrete system is
represented by the following difference equation:
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in which it can be observed that the output of the system at
any time point (y;) depends on the values of the previous
outputs (y:—;7) and inputs (z;—;7), being T' the sampling
time. This dependency is given by the parameters of the
system model (a; and b;). Their values can be expressed by
means of intervals if they are uncertain or imprecise. Part
of the imprecision originates from noise and anticipated dis-
turbances. It is assumed here that these are captured by the
interval values.

Envelopes

The reference behaviour for analytical redundancy can be
obtained from the model by simulation. In the case of a real-
valued model, the results are the trajectories of the variables
of the system across time. In the case of an interval model, as
it is a set of models, a set of curves called envelope has to be
obtained for each variable. The envelope is complete, i.e. it
includes all the possible behaviours of the set of models, and
sound, i.e. every point inside the envelope belongs to the
trajectory of at least one of the models included in the set.

The computation of the envelope is a difficult task, spe-
cially (and paradoxically) if the system is considered time
invariant, i.e. it is known that the values of the parame-
ters are constant although they are uncertain or imprecise.
At each time step of the simulation the maximum and the
minimum possible values of the variable have to be deter-
mined. This is a range computation problem. The function
whose range has to be determined is defined by the inter-
val model of the system and the parameter space is deter-
mined by the interval values of the parameters, the inputs
and the initial state. This problem can be solved, for in-
stance, using global optimization algorithms (Hansen 1992;
Kearfott 1996). This task needs, most of the times, an im-
portant computational effort and, even though, the results
are usually approximations due to errors of rounding, trun-
cation, etc.

Therefore, the result of the simulation is not the envelope
but an approximation of it, which can be complete or sound,
but usually is not both. The complete and sound envelope
is called exact envelope, whereas a complete but not sound
envelope is called overbounded envelopeand a sound but not
complete envelope is called underbounded envelope. In the
worst case, an envelope which is neither complete nor sound
is obtained. The properties of the envelopes are summarised
in figure 1.

These properties are very important to the FD results. The
value of a variable of a non-faulty system must be inside
the predicted envelope, hence a fault is detected when it ap-
pears outside the envelope. However, the value of a variable
of a faulty system can be everywhere, inside or outside the
envelope, due to the dynamics of the system among other
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Figure 1: Properties of the envelopes.

causes. Therefore, it is guaranteed that there is a fault when
a variable is outside the envelope, but there is no way, us-
ing the envelope approach, to guarantee that a system is not
faulty. In other words, if the exact envelope could be used
for FD, there would not be false alarms (under the stated as-
sumptions about noise and disturbances), but there could be
missed alarms.

In the real case the FD system uses envelopes that are not
exact. If an overbounded envelope is used, there are not false
alarms, like when the exact envelope is used, and the amount
of missed alarms depend on the degree of overbounding of
the envelope. If the envelope is much overbounded, the
amount of missed alarms is larger. On the other side, if
an underbounded envelope is used, the amount of missed
alarms is smaller, but there may be false alarms. There-
fore, the exact envelope is the one that reduces the amount
of missed alarms to the minimum allowed by the envelope-
based FD method without generating false alarms.

The properties of the envelopes of several simulators are
assessed in (Armengol et al. 2000).

Error-bounded Envelopes

Even when the envelopes are overbounded (resp. under-
bounded) the degree of overbounding (resp. underbounding)
is generally not known, so the distance with respect to the
exact envelope is not known. The determination of this dis-
tance is equivalent to the determination of the exact enve-
lope. Nevertheless this distance can be bounded computing
simultaneously an overbounded and an underbounded enve-
lope: the exact envelope includes the underbounded one and
is included in the overbounded one. The set formed by an
overbounded and an underbounded envelope is called error-
bounded envel ope.

The use of error-bounded envelopes for FD compared to
the search of the exact envelope is an important improve-
ment as it allows one to obtain the same results with much
less computations. This is achieved when the error-bounded
envelopes are computed iteratively. Every time a partial re-
sult is obtained, it is compared with the measurement of the
variable. The FD algorithm is structured along these three



cases:

e Case 1. If the measurement is outside the overbounded
envelope, the iterative procedure can stop because al-
though better approximations to the exact envelope could
be obtained, the measurement would always be outside
the overbounded envelope. A fault is indicated.

e Case 2. If the measurement is inside the underbounded
envelope, iterations can also stop because even if better
approximations to the exact envelope would be obtained,
the measurement would remain in that zone. This means
that a fault can not be indicated, even if the system is
faulty.

e Case 3. If the measurement is between the overbounded
and the underbounded envelopes, more iterations have to
be done to come back to one of the two previous cases.

It is clear from the above algorithm that the use of error-
bounded envelopes guarantees that there are not false alarms
and that the amount of missed alarms is reduced to the mini-
mum (corresponding to the exact envelope). In other words,
the optimal results are obtained with much less computa-
tions than the ones needed to obtain a close approximation
of the exact envelope.

Modal Intervals for Producing Error-bounded
Envelopes

The computation of error-bounded envelopes is nicely
solved by applying the Modal Interval Analysis (MIA) (Ar-
mengol et al. 1999). MIA (SIGLA/X 1999) is an extension
of classical interval analysis (Moore 1966; 1979). The main
difference is that interval analysis identifies an interval by a
set of real numbers, whereas MIA identifies an interval by
the set of predicates that are fulfilled by the real numbers.
Then, a modal interval is defined by a pair

X := (X',QX) @

In this pair, X' is called the extension, X' =
{[a,b]" | a,b € R, a<b} € I(R). QX is the modality,
QX € {E,U}. The existential modality F indicates that at
least one element in the interval fulfills a predicate whereas
the universal modality U indicates that every element in the
interval fulfills it.

The dual formulation of modal intervals results in the def-
inition of two modal interval extensions of functions, noted
by f* (X) and f** (X) respectively, which provide meaning
to the interval computations. In the case of the envelopes, the
semantics associated to the *-extension is:

Uy (0),Y (0))U(2(0),2(0))-.. @)
U(z(n=1),Z(n=1))U(p;, Bi) E(y(n),Y (n))
(y () =f(y(0),2(0),....2(n=1),pi))

In this expression, y (0) is the output of the system at the
initial state, z (i) are the inputs, p; are the parameters of the
system model and Y (n) is the calculated envelope at the
time point n. This expression is read: “For every y (0), z (i)
and p;, y (n) belongs to Y (n)”. Therefore, the envelope
computed using the *-extension is complete.

On the other side, the semantics associated to the **-
extension is:

Uy (n),Y (n)E(z(0),Z(0))... (4)
E(z(n=1),Z(n=1))E(pi, ;) E(y(0),Y (0))

() =rfy(0),2(0),....2(n=1),pi))

This semantics is dual: “For every y (n) belonging to
Y (n), there exist p;, z (i) and y (0) that produce this out-
put”. Therefore, the envelope computed using the **-
extension is sound.

If both extensions are equal, then the result is exact. Un-
fortunately, the computation of the *- and **-extensions
is, in general, a difficult challenge. MIA provides tools
to find overbounded computations of f*(X) and under-
bounded computations of f** (X)) which maintain the se-
mantic interpretations. These computations are made con-
trolling the roundings of the operations and taking into ac-
count the multi-incident variables in the functions.

To illustrate multi-incidences, assume that the model of a
system is given by the following difference equation:

Yn = aYn—1 + (@ + b)zp—1 (5)

The functions whose range have to be computed at the
first steps are:

y1 = ayo+ (a+b)zo (6)
y2 = ay1 + (a+b)z
ys = ays+ (a+b)z

There are several kinds of multi-incidences in these func-
tions:

e inside a function, for instance, a appears several times in
Yi-

e between functions in different time steps, for instance, a
appears in y; and yo and it is a single parameter if the
system is considered time invariant.

¢ hidden multi-incidences, for instance, if a depends on a
physical parameter and b depends on the same one.

A naive substitution of the parameters by their interval
values in these functions would lead to obtain results defin-
ing overbounded envelopes due to the multi-incidences of
the variables. This is what happens when interval arithmetic
is applied.

The coercion theorems provide the conditions and the way
to obtain optimal extensions when there is monotonicity. If
the function is not monotonic for each multi-incident com-
ponent, these theorems can be partially applied in order to
reduce the complexity of the problem.

Finally, a way to obtain even better approximations is by
splitting the parameter space. This is done by means of a
branch-and-bound algorithm. The use of modal intervals
decreases computational time because more subspaces are
eliminated compared to other techniques.



Algorithm

This branch-and-bound algorithm computes an external and
an internal approximations to the range of the function at
each time point. The algorithm applies the coercion theo-
rems to the monotonic variables, which are determined as-
sessing the monotonicity by using only the first derivative. If
the function is not totally monotonic and possibly the maxi-
mum or the minimum of the function is in a parameter space,
this space is split along the edges of the not monotonic vari-
ables.

The input arguments of the algorithm are a function f of
a set of variables X = {x; ...z,} and the parameter space
determined by the interval values of the variables:

Q = {q = [q17q2,"'7qn]T|qi € q@;@] = ]-n}
()
The output arguments are the external and internal approxi-
mations to the range.
function (external,internal) =approx_range(f, Q)
finish = false
internal =inner(f, Q)
save(Q, read_list)
DO
external = internal
DO
P =get(readlist)
IF not_monotonic(f, P) = 0 THEN
partial =exact(f, P)
internal = internal V partial
external = external V partial
ELSE
partial =inner(f, P)
internal = internal V partial
partial =outer(f, P)
external = external V partial
IF not(partial C internal) THEN
(Pl,PQ) :Spllt(P)
save( Py, write_list)
save( Py, write_list)
ENDIF
ENDIF
WHILE not(is_empty (read_list))
IF is_.empty(write_list) THEN
finish = true
ENDIF
IF stop_condition THEN
finish = true
ENDIF
exchange(read_list, write_list)
WHILE not(finish)

The functions that are used by the algorithm are described
in the following.

function b =not(c) returns true if ¢ is false and vice
versa.

function save(Q, list) adds the subspace (@ to the list of
subspaces list. The length of the list is increased by one
unit.

function Q =get(list) picks one of the elements of the
list of subspaces list. This element is deleted in the list, so
the number of elements in the list is decreased by one unit.

function b =empty(list) returns true or false depend-
ing on whether the list of subspaces list is empty or not,
respectively.

function exchange(list1,list2) exchanges the lists of
subspaces list1 and list2.

function a =not_monotonic(f, Q) returns the real num-
ber a, that is the number of variables with respect to which
the function f is not monotonic in the parameter space Q.
The test is performed using only the first derivative and us-
ing the *-partially optimal coercion theorem.

function Z =exact(f, Q) applies the optimal coercion
theorem for uni-modal arguments to have the exact range of
the totally monotonic function f in the parameter space @,
which is returned as the interval Z.

function Z =inner(f, Q) applies the **-partially optimal
coercion theorem to have an internal approximation of the
range of f in the parameter space (, which is returned as
the interval Z.

function Z =outer(f, Q) applies the *-partially optimal
coercion theorem to have an external approximation of the
range of f in the parameter space (, which is returned as
the interval Z.

function (Q1, Q=) =split(Q) splits the parameter space
@ in two subspaces @1 and @) such that Q; U Q2 = @
and Q1 N Q> = (. Different criteria may be used for the
splitting. The implemented function splits along the largest
edge among the non-monotonic variables.

The function stop_condition compares the measured
value of the variable with the partial results of the branch-
and-bound algorithm and, according to the three cases
described above, returns ¢rue if this algorithm can already
stop and false otherwise:
function b =stop_condition(external, internal, meas)

IF meas > external THEN

b = true
ELSEIF meas < internal AND meas > internal
THEN
b = true
ELSEIF meas < external THEN
b = true
ELSE
b= false
END

Sliding Time Windows

When the behaviour of a system is simulated, it is assumed
that measurements of the variables are not available so the
value of each variable at a specific time point is computed
with the model of the system, from the initial state (the val-
ues of the variables at a past time point) and the inputs to the
system from the initial time point to the current one. This
implies that each simulation step needs more computations
than the previous one and hence the simulation becomes



slower and slower. This is the drawback of the simulator
presented in (Armengol et al. 1999).

In the case of FD, the measurements of the variables (gen-
erally a subset) at each time point are needed in order to
compare them with the corresponding envelopes. Hence
these measurements are available and any measurement be-
longing to a past time point can be used as initial state to
compute the envelopes at the current time point. The time in-
terval from this initial time point to the current one is called
time window. If the window used at each simulation step
has always the same length, then a dliding time window is
being considered. In this case, the time needed to compute
the envelopes at each simulation step remains constant.

The resulting envelopes depend on the length of the slid-
ing time window that is being used, so the indication of
faults using different window lengths can also be different.
This can be due to different reasons.

One possible reason is the dynamics of the system. The
output of a faulty system may be inside the envelope, at
least during some time interval, so there is a detection time.
Experimentally, it has been seen that longer windows have
longer detection times.

Then it could seem that shorter windows are better. This
is not true. For instance, shorter windows do not detect
slow drifts because the envelope "follows” the measurement.
This gives another possible reason for having different re-
sults when different window lengths are used: the kind of
fault, its duration, etc. The experiments show that short du-
ration faults are not detected by longer windows because the
duration of the fault is shorter than the detection time. These
questions will be deeply studied in the future.

And yet another reason is that there are combinations of
parameters outside their respective intervals that give out-
puts inside the envelope. This is shown with an example in
the following.

The example is based on a generic first order system:

T kT
Yn = (1 - ?> Yn—1 + Tanl (8)

with the following parameters:

e static gain: k£ = [0.95,1.05].

e time constant: 7 = [10, 20] s.

e initial state: yo = [1.5, 1.5].

e samplingtime: T =1s.

e input: z, =2,1,2,1...forn =0,1,2,3...s.

The exact envelope at t = 1 s is computed. Then, many
combinations of k& and 7 are simulated and their output is
checked against the envelope. The result is shown in figure
2a: the combinations belonging to the interval model (the
rectangle) give outputs inside the envelope, as expected, but
many others (the shadowed regions) also do.

The same procedure isdone at¢ = 2sand ¢ = 3 s and the
obtained results are shown in figures 2b and 2c, respectively.

Given that error-bounded envelopes guarantee that there
are not false alarms but there can be missed alarms, if a fault
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Figure 2: FD using different window lengths.

is indicated by any of the envelopes obtained using different
window lengths, then it is guaranteed that there is a fault:

IF yyn(t) & Y (w1, ) OR ... )
OR Yy (t) € Y(wy,t) THEN fault =1

ym(t) is the measured value of the variable y at time ¢,
Y (w;, t) is the value of the variable y at time ¢ predicted
by the window length w; and the value of fault is 1 if a
fault has been detected and 0 otherwise.

Therefore, the detection results that are obtained using
multiple sliding time windows are better than the ones ob-
tained using any single sliding time window, because it in-
crements the amount of detected faults and moreover guar-
antees that there are not false alarms. This is confirmed in
figure 2d which has a shadowed region smaller than the ones
in figures 2a, 2b and 2c because it is the intersection of them.

The results that are obtained using multiple sliding time
windows are also better than the ones that are obtained by
simulation, i.e. computing the envelopes at any time point
starting always from the same initial one, like in (Armengol
etal. 1999).

Modal Interval Simulator

The Modal Interval Simulator (MIS) implements these fea-
tures:

e Computation of error-bounded envelopes. It uses a
branch-and-bound algorithm based on modal intervals.
This algorithm calculates the error-bounded envelopes
iteratively, tightening the overbounded envelope and
widening the underbounded one at each iteration. The
iterations stop when the computation of better approxi-
mations can not change the FD results.

e Use of multiple sliding time windows.

The branch-and-bound algorithm is programmed in C++
because the modal interval arithmetic must control the



rounding of the operations by the microprocessor in order
to maintain the semantics. The simulator MIS, however, is
implemented in Matlab. It also uses Maple for some sym-
bolic computations (Armengol et al. 1999).

FD in an Academic Example

MIS has been used to detect faults in the generic first order
system introduced above. Now the initial state is yo = [0, 0]
and the input applied to that system is a sequence of steps of
different lengths and heights shown in figure 3.

input
N

0 10 20 30 40 50
time (s)

Figure 3: Input to the first order system.

Case A: Clean Data

This case shows the FD results when the system is faulty:
e static gain: k = 1.15.

e time constant: 7 =5 s.

It is assumed that there is not uncertainty in the measure-
ments, so their values are precise and correspond to the exact
values of the output variable:

Ym(t) = y(t) (10)

Figure 4 shows the results of the simulation: the error-
bounded envelopes (the overbounded envelope in solid line
and the underbounded envelope in dashed line).

It may be observed that there are several time points for
which the overbounded envelope is much overbounded. It is
because the measurement has been already detected inside
the underbounded envelope at one of the first iterations. So
it is not necessary to obtain better (less overbounded) ap-
proximations of it. In these cases, the results are obtained
with a small computational effort.

Figure 5 represents the FD results for different window
lengths. This figure shows that, although the system is faulty
during the whole time interval, it is detected only at some
time points. It shows also that the results using different
window lengths are different, so the use of multiple sliding
time windows enhances the overall results.

output

0 10 20 30 40
time (s)

a
o

Figure 4: Error-bounded envelopes for window length w =
5.

0 10 20 30 40 50
time (s)

Figure 5: FD results in case A.

Case B: Uncertain Data

If measurements are uncertain (noisy, for instance), it is
clear that this uncertainty must be taken into account in the
decision procedure, otherwise it may result in false alarms.

The proposed approach is to bound the uncertainty. It is
taken into account converting the real-valued measurements
into interval measurements.

The decision procedure described above has to be modi-
fied, because it was based on the comparison between a real
number and an error-bounded envelope. The new decision
procedure is:

e Case 1. If the intersection between the measurement and
the overbounded envelope is empty, the iterative proce-
dure can stop because although better approximations to
the exact envelope could be obtained, this intersection
would always be empty so it is guaranteed that there is
a fault.

e Case 2. If the intersection between the measurement and
the underbounded envelope is not empty, iterations can
also stop because even if better approximations to the ex-
act envelope could be obtained, this intersection would
never be empty. This means that possibly the actual value



of the variable is inside the underbounded envelope and
hence a fault can not be indicated, even if the system is
faulty.

e Case 3. Inany other case, more iterations have to be done
to come back to one of the two previous cases.

In this case a system which is not faulty has been used, but
the measurements have been made uncertain (noise, analog
to digital conversion errors, etc.) by adding a random num-
ber between -0.1 and 0.1 to the exact value of the output
variable:

ym(t) = y(t) + rnd([—0.1,0.1]) (11)

As the difference between the measurements and the ac-
tual values of the variables is known to be in the interval
[—0.1,0.1], the real-valued measurements are converted into
interval measurements by adding this interval:

Yim(t) = ym () +[-0.1,0.1] (12)

When the above algorithm is applied to these data the in-
dication of fault is always ”0”, so there are not false alarms.

Case C

This case shows the results of FD using the faulty system
of case A and assuming that there is an uncertainty in the
measurements like the one described for case B. So, interval
measurements are used. The results are shown in figure 6.
There are not false alarms so if any of the different window
lengths indicate a fault at a specific time point, it is guaran-
teed that there is a fault at that time point.
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Figure 6: FD results in case C.

FD in a Real Example

This example, the TIGER 2nd stage nozzles system, comes
from the Esprit project TIGER (Milne et al. 1994). Itis a
real example with real data.

The goal of that project was to detect and diagnose faults
in gas turbines. These devices are very complex and in-
clude many subsystems: compressor, fuel system, cooling
air, cooling water, hydraulic system, inlet guide vanes, lu-
brication oil system, steam injection system, etc.

Model

One of the subsystems of two shafts gas turbines is the 2nd
stage nozzles system. It is formed by the nozzles, which are
used to open and close the air flow through the turbine, and
their associated actuator. The variables are:

e TSN Z: the position of the nozzles, hence the output of
this subsystem.

e TANZ: the input to the actuator of the nozzles, hence
the input of this subsystem.

The set formed by the nozzles and their actuator is mod-
eled by means of the following difference equation:

TSNZ,=TSNZp_1 +ns1TANZy_1 +ns>  (13)

where ns; are the parameters of the model. The values of
these parameters are intervals because they include the un-
certainty. These values are not given here for confidentiality
reasons.

Data

The values of about 600 variables are collected once per sec-
ond, so there are many data from the gas turbine. Most
of these data belong to situations of normal behaviour and
hence are not very interesting. But sometimes there are ab-
normal situations, unusual events or incidents that are more
interesting. Data from these situations are saved and called
scenarios.  Among them, there are scenarios with vibra-
tion problems, oil leaks, sensor failures, bad positioned or
calibrated sensors, poorly tuned controllers, problems with
valves, problems of gas supply, etc.

The example shown in this section uses data from a sce-
nario in which the system is faulty. The nozzles are given
a reference to close for a while and open again. Due to a
lack of power of the actuator, the nozzles close, but less than
expected, as it can be seen in figure 7.

position

50 100 150 200
time (s)

Figure 7: Reference (dashed line) and actual (solid line) po-
sition of the nozzles.

Fault Detection Results

The measurements are quantized, as it can be seen in figure
7, so the noise in the measuring procedure can make that



a specific analog measure is converted to a digital number
which is not the closer one. For this reason, the interval
measurements that are used in this case are:

Yim (t) = ym(t) + [—0.055,0.055] (14)

The results of MIS using real (noisy) data and windows of
length 1, 2, 5, 10, 20, 50, 100 and 200 s are shown in figure
8.
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Figure 8: FD results in a subsystem of the TIGER gas tur-
bine.

It can be seen in this figure that there are not false alarms
and that some window lengths (w = 100 s and w = 200
s) never detect this kind of fault which lasts only for a short
time.

Conclusions

This paper presents an approach to the detection of faults
based on an interval model of the system, i.e. a model which
express the uncertainty and the imprecision. The simulation
of this model produces envelopes. Error-bounded envelopes
produce the same results than the exact envelope with much
less computations. The computation of these envelopes is
performed using modal interval analysis in a branch-and-
bound algorithm. This allows to obtain envelopes with the
required semantics in an iterative procedure that stops as
soon as the results are optimal.

Different sliding time window lengths may be used to
generate the envelopes. Error-bounded envelopes guaran-
tee that whenever one of them detects a fault then there is a
fault. Therefore, the use of multiple sliding time windows
enhance the results. This has been implemented in the sim-
ulator MIS. It has been used to detect faults in academic and
real examples.

MIS is also a useful tool to get better models. If the model
of the system is too imprecise, i.e. the intervals are too wide,
MIS can be used to obtain models with tighter intervals in an
iterative procedure: adjustment of the interval parameters,
simulation in different scenarios, new adjustment according
to the simulation results, and so on.

When the measurement is outside the overbounded enve-
lope, a fault is detected. Its value is either larger or smaller
than predicted. A research topic for the future is the use

of this information to diagnose some faults, i.e. to indicate
which is the faulty parameter of the model.

When a fault is detected, there are some window lengths
that detect the fault and some others do not detect it. Another
research topic is the use of this information to identify the
fault, i.e. to indicate which is the type of the fault (an abrupt
one, a short duration one, a drift one, etc.).
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